Out-of-Sample Extrapolation utilizing Semi-Supervised Manifold Learning (OSE-SSL): Content Based Image Retrieval for Histopathology Images
نویسندگان
چکیده
Content-based image retrieval (CBIR) retrieves database images most similar to the query image by (1) extracting quantitative image descriptors and (2) calculating similarity between database and query image descriptors. Recently, manifold learning (ML) has been used to perform CBIR in a low dimensional representation of the high dimensional image descriptor space to avoid the curse of dimensionality. ML schemes are computationally expensive, requiring an eigenvalue decomposition (EVD) for every new query image to learn its low dimensional representation. We present out-of-sample extrapolation utilizing semi-supervised ML (OSE-SSL) to learn the low dimensional representation without recomputing the EVD for each query image. OSE-SSL incorporates semantic information, partial class label, into a ML scheme such that the low dimensional representation co-localizes semantically similar images. In the context of prostate histopathology, gland morphology is an integral component of the Gleason score which enables discrimination between prostate cancer aggressiveness. Images are represented by shape features extracted from the prostate gland. CBIR with OSE-SSL for prostate histology obtained from 58 patient studies, yielded an area under the precision recall curve (AUPRC) of 0.53 ± 0.03 comparatively a CBIR with Principal Component Analysis (PCA) to learn a low dimensional space yielded an AUPRC of 0.44 ± 0.01.
منابع مشابه
A Scalable Graph-Based Semi-Supervised Ranking System for Content-Based Image Retrieval
The authors propose a scalable graph-based semi-supervised ranking system for image retrieval. This system exploits the synergism between relevance feedback based transductive short-term learning and semantic feature-based long-term learning to improve retrieval performance. Active learning is applied to build a dynamic feedback log to extract semantic features of images. Two-layer manifold gra...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملImage retrieval using nonlinear manifold embedding
The huge number of images on the Web gives rise to the content-based image retrieval (CBIR) as the text-based search techniques cannot cater to the needs of precisely retrieving Web images. However, CBIR comes with a fundamental flaw: the semantic gap between high-level semantic concepts and lowlevel visual features. Consequently, relevance feedback is introduced into CBIR to learn the subjecti...
متن کاملRegion Selection based on Evidence Confidence for Localized Content-Based Image Retrieval
Over the past decade, multiple-instance learning (MIL) has been successfully utilized to model the localized content-based image retrieval (CBIR) problem, in which a bag corresponds to an image and an instance corresponds to a region in the image. However, existing feature representation schemes are not effective enough to describe the bags in MIL, which hinders the adaptation of sophisticated ...
متن کاملVideo semantic analysis based on structure-sensitive anisotropic manifold ranking
As a major family of semi-supervised learning (SSL), graph-based SSL has recently attracted considerable interest in the machine learning community along with application areas such as video semantic analysis. In this paper, we analyze the connections between graph-based SSL and partial differential equation(PDE) based diffusion. From the viewpoint of PDE-based diffusion, the label propagation ...
متن کامل